УДК 621

УМЕНЬШЕНИЕ МИКРОВОЛНИСТОСТИ НА КОЛЬЦАХ ПОДШИПНИКОВ КАЧЕНИЯ ПРИ ПОМОЩИ РАЗЛИЧНЫХ СМАЗОК

В. А. Голубева, И. В. Петров, Н. В. Грунтович

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Республика Беларусь

Последние 15 лет на предприятия Республики Беларусь поступают подшипники качения низкого качества, что в свою очередь стимулирует крупных потребителей устанавливать специальные диагностические стенды для входного контроля. Проведенные исследования на диагностическом стенде (частота вращения 24,4 Γ ц) показали, что 30 % дефектов подшипников качения имеют высокий уровень вибрации в диапазоне частот 5–500 Γ ц, а 60–70 % – в диапазоне частот 1000–5000 Γ ц. Высокая область частот повышенной вибрации вызвана:

- 1) наличием микроволнистости новых подшипников качения (низкий класс точности обработки колец и тел качения);
 - 2) наличием микрораковин, возникающих в процессе эксплуатации;
 - 3) задирами, которые появляются вследствие скольжения при плохой смазке;
- 4) наклепами (выбоинами) на наружном кольце, если внутреннее кольцо подшипника ставится на вал без натяга и наружное кольцо не проворачивается в подшипниковом щите [1], [2].

Впервые была предпринята попытка по уменьшению влияния микроволнистости поверхности колец подшипников качения на уровень их вибрации и срок службы, используя различные смазки.

Методика проведения эксперимента включала несколько этапов:

- 1) удаление заводской смазки;
- 2) подготовка смеси, состоящей из глицерина с добавлением мелкодисперсного абразивного вещества (5–10 мкм);
- 3) с помощью пипетки окружность колец подшипника качения промазывалась смесью в нескольких местах;
 - 4) создавалась равномерная нагрузка около 1 кг;
- 5) обеспечивалась частота вращения внутреннего кольца 24,4 Γ ц на протяжении 25-30 мин, при этом каждые 360° наружное кольцо перемещалось по отношению к внутреннему;
- 6) по истечении этого времени подшипник качения промывался от глицерина с абразивным порошком;
 - 7) закладывалась смазка OI MOL KSC WR2-2;
- 8) снова создавалась равномерная нагрузка (около 1 кг) и обеспечивалась частота вращения внутреннего кольца на 25–30 мин.

Имели место и неудачные попытки проведения эксперимента, пока не была отработана технология.

На рис. 1 представлены спектры вибраций подшипника качения № 409.

Высокий уровень вибрации в области 1000–5000 Гц до обработки (восстановления) подшипника свидетельствует о наличии микроволнистости колец. После обработки и замены смазки наблюдается уменьшение вибрации в рассматриваемой области.

Таким образом, при помощи различных смазок и данной методики обработки можно уменьшить микроволнистость на кольцах, тем самым увеличивая срок эксплуатации подшипника качения.

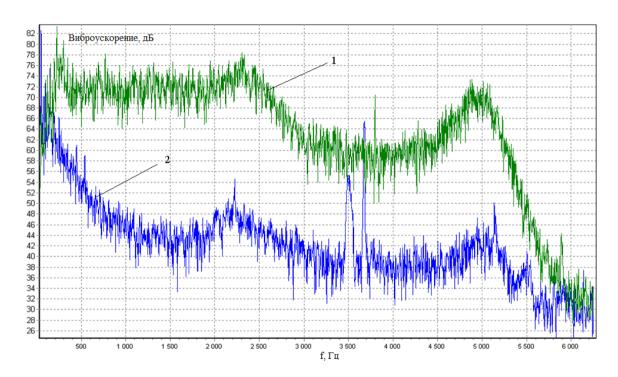


Рис. 1. Вибродиагностирование: I – подшипник № 409 до обработки (восстановления); 2 – после обработки (t = 25 мин) и смазки OI MOL KSC WR2

Литература

- 1. Грунтович, Н. В. Повышение качества подшипников качения перед установкой на рабочий механизм / Н. В. Грунтович, И. В. Петров, Д. В. Кирдищев // Энергосбережение и эффективность в технических системах : материалы V Междунар. науч.-техн. конф. студентов, молодых ученых и специалистов, 2018. - С. 100-102.
- 2. Грунтович, Н. В. Разработка диагностической модели дизельных форсунок по результатам вибродиагностирования / Н. В. Грунтович, Д. В. Кирдищев, В. Б. Попов // Вестн. Гомел. гос. техн. ун-та им. П. О. Сухого. – 2017. – № 2. – С. 18–24.