
ПОСТАНОВКА ЗАДАЧИ О НАХОЖДЕНИИ СИЛЫ В ПЛОСКОСТИ ДВОЙНИКОВАНИЯ ДЕФОРМИРУЕМОГО ПРИЗМАТИЧЕСКОГО ДВОЙНИКУЮЩЕГОСЯ МОНОКРИСТАЛЛА

В. О. Остриков, О. М. Остриков

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Республика Беларусь

В настоящее время накоплен большой объем экспериментальных результатов по исследованию механического двойникования кристаллов. Выявлены основные физические закономерности двойникования, заложены основы и продолжается развитие теории двойникования. Для практического использования полученных результатов представляет интерес решение инженерных задач по технической механике двойникующихся материалов.

Целью данной работы стала постановка задачи о нахождении силы, действующей в плоскости двойникования деформируемого в заделке призматического монокристалла.

 $Puc.\ 1.$ Схематическое изображение сдвойникованного нагруженного призматического образца в жесткой заделке до (a) и после (δ, s) освобождения от связей

На рис. 1, a схематически показано сечение сдвойникованного призматического образца в жесткой заделке до освобождения от связей. След двойниковой границы обозначен отрезком $[D_1D_2]$; $F_{\rm ext}$ – искомая сила, действующая в плоскости двойнико-

вания; α — угол наклона линии действия силы $F_{\rm ext}$ к поверхности образца; β — угол двойникования; F — заданная сила, действующая на торец образца. Решение поставленной статической задачи классическими методами приводит к ситуации, когда количество неизвестных превосходит количество уравнений. Поэтому предлагается разбивка задачи на две: для несдвойникованной (δ) и сдвойникованной (δ) областей кристалла.