К ВОПРОСУ ВЛИЯНИЯ ЛАЗЕРНОЙ ОБРАБОТКИ НА ИЗМЕНЕНИЕ СТРУКТУРЫ И СВОЙСТВ ПОВЕРХНОСТНЫХ СЛОЕВ СТАЛИ Р6М5

Л. С. Верещагина, И. Н. Степанкин, Е. П. Поздняков

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Республика Беларусь

Введение. Лазерная обработка высоколегированных инструментальных сталей является современным высокотехнологичным способом получения поверхностно модифицированного слоя. Интенсивное энергетическое воздействие на сплав обеспечивает получение в тонком поверхностном слое неравновесных твердых растворов, в которых растворяются практически все легирующие элементы. Создаются условия для полного устранения карбидной фазы и получения аустенитной структуры. Возможность изменения режимов обработки обеспечивает расширение диапазона свойств структурных вариаций в модифицированном слое.

Объекты и методики исследований. В работе исследовано влияние лазерной обработки на морфологию поверхностного слоя стали Р6М5. Экспериментальные образцы подвергали предварительной обработке – закалке и трехкратному отпуску для получения твердости 63-64HRC и структуры мартенсит + карбиды. Поверхностное модифицирование проводили на иттербиевом лазере с длиной волны излучения 1070 нм. Мощность излучения при обработке всех экспериментальных образцов составляла 1,3 кВт. Сканирование лазерного пучка с частотой 220 Гц в поперечном направлении обеспечивало формирование зоны квазистационарного нагрева размером 0,7 × 6 мм. Продольное перемещение по обрабатываемой поверхности образцов производилось машинным способом с скоростями 600 - 1350 мм/мин. Наиболее низкая скорость перемещения подбиралась опытным путем, с целью достижения эффекта частичного оплавления на боковой поверхности образцов. Обработка всех последующих образцов производилась с постепенным ускорением для снижения степени нагрева поверхностного слоя. Для анализ структуры и свойств модифицированных слоев использовали оптический микроскоп Метам РВ22 и микротвердомер ПМТ-3.

Результаты исследований и их обсуждение. Наибольшая глубина слоя получена в результате обработки со скоростью 600 мм/мин. Структура упрочненного слоя в этом случае отличается внешней гомогенизированной прослойкой толщиной не менее 100 мкм. Отличительной особенностью металла является инертность к стандартному травителю на основе азотной кислоты, что обусловлено формирова-

нием металлической матрицы с большим содержанием остаточного аустенита. Распределение микротвердости по сечению металла свидетельствует о том, что глубина зоны термического влияния значительно больше наружного аустенизированного слоя. Строение наиболее глубоких слоев, сформированных при скоростях обработки 600-900 мм/мин, включает три зоны. В наружной зоне, имеющей однородную структуру, отмечено незначительное увеличение твердости по отношению к сердцевине. Под ней располагается зона максимальной твердости, в которой присутствуют не полностью растворенные карбидные включения. Третья – переходная зона - имеет пониженную твердость по отношению к упрочненному слою и сердцевине, что, по-видимому, обусловлено протеканием процессов самоотпуска. Увеличение скорости лазерной обработки позволяет уменьшить толщину модифицированного слоя и изменяет его морфологию. После обработки со скоростью свыше 750 мм/мин не образуется внешняя зона модифицированного слоя с пониженной твердостью и полным отсутствием карбидной фазы. Распределение микротвердости по сечению плавно изменяется до значений порядка 8 ГПа, свойственных сердцевине металла. Полная глубина поверхностной модификации изменяется от 0,5 до 1,2 мм при изменении скорости обработки с 1350 до 600 мм/мин. При этом толщина слоя, в котором отмечается высокая степень гомогенизации (аустенитизации) металлической матрицы, составляет от 20 до 150 мкм.