УДК 539.6:621.926

ПРОГНОЗИРОВАНИЕ ЭФФЕКТИВНОСТИ ПРИМЕНЕНИЯ ТЕХНОЛОГИЧЕСКИХ ЖИДКОСТЕЙ ПРИ ДИСПЕРГИРОВАНИИ МАТЕРИАЛОВ

И. И. Злотников, П. А. Хило

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Республика Беларусь

Высокодисперсные минеральные порошки широко применяются в качестве наполнителей полимеров, компонентов керамики, пигментов и др. Традиционным способом их получения является механическое измельчение исходного сырья, в частности, с использованием технологических жидкостей. Жидкость, проникая в микротрещины, возникающие в твердом теле при воздействии рабочего инструмента, создает в них расклинивающее давление, способствуя снижению усилия разрушения. Поэтому она должна уменьшать силу молекулярного взаимодействия между поверхностями образующихся микротрещин. Наиболее общим способом расчета силы взаимодействия твердых поверхностей является электромагнитная теория [1]. Если зазор l между поверхностями мал по сравнению с длинами волн, характерными для спектров поглощения тел, формула для силы взаимодействия имеет вид (индексы l и l относятся к телам, l — к прослойке между ними):

$$F(l) = \frac{\hbar}{8\pi^2 l^3} \int_0^\infty \frac{\left[\varepsilon_1(i\xi) - \varepsilon_3(i\xi)\right] \left[\varepsilon_2(i\xi) - \varepsilon_3(i\xi)\right]}{\left[\varepsilon_1(i\xi) + \varepsilon_3(i\xi)\right] \left[\varepsilon_2(i\xi) + \varepsilon_3(i\xi)\right]} d\xi. \tag{1}$$

Диэлектрическая проницаемость $\varepsilon(i\xi)$ связана с мнимой частью комплексной диэлектрической проницаемости $\varepsilon''(\omega)$ соотношением Крамеса–Кронига:

$$\varepsilon(i\xi) = 1 + \frac{2}{\pi} \int_{0}^{\infty} \frac{\varepsilon''(\omega)\omega}{\omega^{2} + \xi^{2}} d\omega.$$
 (2)

Однако экспериментальное определение $\varepsilon''_{1,2,3}(\omega)$ и вычисление силы по формуле (1) является трудоемким процессом. Спектры поглощения диэлектриков имеют вид полос, где наряду с областями прозрачности существуют зоны поглощения. Если пренебречь малым поглощением на участках прозрачности, а в полосе поглощения функцию $\varepsilon''(\omega)$ аппроксимировать простой, но близкой к реальной зависимостью, то по формуле (2) можно вычислить $\varepsilon_{1,2,3}(i\xi)$, по которым найти силу взаимодействия поверхностей. В данном исследовании предлагается представить зависимость $\varepsilon''(\omega)$ в полосе поглощения в виде формулы Дебая:

$$\varepsilon''(\omega) = \frac{\varepsilon_0 - \varepsilon_{\infty}}{1 + \omega^2 \tau^2} \omega \tau, \tag{3}$$

где ε_0 — статическая диэлектрическая проницаемость, ε_∞ — высокочастотный предел диэлектрической проницаемости; τ — время релаксации, связанное с резонансной частотой ω_0 формулой $\tau=1/\omega_0$. Учитывая, что в случае разрушения твердого тела $\varepsilon''_1(\omega)=\varepsilon''_2(\omega)$, а вместо ε_∞ удобнее использовать квадрат оптического показателя преломления $\varepsilon_\infty=n^2$, была получена формула (индекс I относится к твердым поверхностям, 3 — к жидкости):

$$F(l) = \frac{\hbar\omega_0}{16\pi^2 l^3} \frac{(\varepsilon_{10} - \varepsilon_{30} + n_3^2 - n_1^2)^2}{(\varepsilon_{10} + \varepsilon_{20} - n_2^2 - n_2^2 + 2)}.$$
 (4)

111

Если поглощение происходит не на одной общей частоте ω_0 , а на нескольких, то их вклад в силу взаимодействия суммируется. Авторами на примере некоторых жидкостей (вода, ацетон, жидкий парафин) экспериментально подтверждены выводы, следующие из формулы (4), а также показано, что для тонкого измельчения кварца наиболее перспективны предельные углеводороды фракции C_{10} — C_{15} .

Литература

1. Дзялошинский, И. Е. Общая теория ван-дер-ваальсовых сил / И. Е. Дзялошинский, Е. М. Лифшиц, Л. П. Питаевский // УФН. – 1961. – Т. 73, вып. 3. – С. 381–422.