МНОГОФАКТОРНАЯ МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ЭЛЕМЕНТОВ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ

А. Д. Мельникова

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Республика Беларусь

Научный руководитель В. С. Мурашко

С экспериментом связана любая человеческая деятельность. Человек экспериментирует всегда и везде. И при этом естественным, хотя и противоречивым, является желание проводить эксперимент, как правило, в наиболее короткие сроки с наименьшими затратами, получая при этом достоверную и точную информацию.

В последнее время изменились объекты исследования и изменилось само понятие об эксперименте и способах его проведения. Сейчас все больше приходится иметь дело со сложными системами, в которых множество элементов, большое количество взаимодействующих друг с другом факторов.

Процессы обработки материалов резанием являются сложными многофакторными процессами. В этих процессах исследуемая величина часто является случайной величиной, зависящей от большого числа контролируемых и неконтролируемых факторов. Поэтому процессы резания все чаще стали рассматривать с вероятностностатистических позиций, а при экспериментальных исследованиях применять методы планирования эксперимента, базирующиеся на идеях математической статистики.

Целью данной работы является разработка методики получения многофакторной математической модели, характеризующей зависимость температуры резания от основных факторов процесса резания.

При исследовании процессов резания многие зависимости традиционно представляют уравнениями степенного вида, в частности, эмпирические температурные зависимости:

$$\theta = cv^{\alpha}s^{\beta}t^{\gamma},\tag{1}$$

где v — скорость резания, м/мин; s — подача, мм/об; t — глубина резания, мм; c, α , γ , β — постоянные величины.

Уравнение (1) в результате логарифмирования линеаризуется:

$$\ln \theta = \ln c + \alpha \ln v + \beta \ln s + \gamma t. \tag{2}$$

Так как температура в зоне резания измерялась в миллиметрах длины кривой на диаграммной ленте потенциометра в качестве функции отклика, решено было принять $y = \ln \theta$, а математическую модель представить в виде полинома второй степени:

$$y = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_3 + b_{12} x_1 x_2 + b_{13} x_1 x_3 + b_{23} x_2 x_3 + b_{11} x_1^2 + b_{22} x_2^2 + b_{33} x_3^2,$$
 (3)

где x_1, x_2, x_3 — кодированные значения факторов v, s, t.

В качестве плана эксперимента предлагается использовать центральный композиционный ротатабельный план второго порядка [1], представленный на рис. 1, а кодирование независимых переменных проводить с помощью соотношений

$$x_{i} = \frac{2(\ln \widetilde{x}_{i} - \ln \widetilde{x}_{i_{B}})}{\ln \widetilde{x}_{i_{B}} - \ln \widetilde{x}_{i_{B}}} + 1,$$
(4)

где \widetilde{x}_i – натуральное значение; $\widetilde{x}_{i\text{в}}$, $\widetilde{x}_{i\text{н}}$ – натуральные значения верхнего и нижнего уровней соответственно.

С целью определения коэффициентов регрессии проводится полный факторный эксперимент по алгоритму [2].

	A	В	С	D	E				
22	Матрица планирования эксперимента								
23			10 m2 5 m2 20 0 m 10 17 m 10 m						
24	M1922 A 15 10 10 10 10 10 10 10 10 10 10 10 10 10	**************************************	Уровни фактора						
25	Название части плана	Номер опыта	X1	X2	Х3				
26		- 1	್_1	-1	-1				
27	План Z ³ "ядро плана" N=8	2	1	-1	-1				
28		3	-1	1	-1				
29		4	1	1	-1				
30		5	-1	-1	1				
31		6	1	-1	1				
32		7	-1	1	1				
33		8	1	1	1				
34		9	-1,681792831	0	0				
35		10	1,681792831	0	0				
36	"3 вездные точки" п _к =6 а=1,682	11	. 0	-1,681792831	0				
37	S DESAMBLE TO NOT TILE O OF T,002	12	0	1,681792831	0				
38		13	0	0	-1,68179283				
39	8	14	0	0	1,681792831				
40	"Нулевые точки" n _o =6	15	0	0	0				
41		16	0	0	0				
42		17	0	0	0				
43		18	0	0	0				
44		19	0	0	0				
45		20	0	0	0				
46									

Рис. 1. Матрица планирования эксперимента

Решение вручную поставленной интерполяционной задачи требует очень много временных затрат и не исключает случайных ошибок, которые может допустить разработчик.

Предлагается методика реализации представленного алгоритма для получения математической зависимости температуры резания от скорости, подачи и глубины резания при обработке точением стали 20 цельными проходными резцами из быстрорежущей стали P18 в Microsoft Excel.

Принятые уровни факторов представлены в таблице.

Уровни факторов

	Значения факторов кодированные для x_1, x_2, x_3							
Hamisananan damanan								
Наименование факторов	-1,6812	-1	0	1	1,6812			
	натуральные для <i>v</i> , <i>s</i> , <i>t</i>							
Скорость резания v , м/с	0,072	0,115	0,228	0,454	0,725			
Подача s, мм/об	0,082	0,11	0,169	0,26	0,3486			
Глубина резания t , мм	0,251	0,36	0,612	1,04	1,493			

Рис. 2 содержит фрагмент расчетов в Microsoft Excel – рабочую матрицу с результатами проведения эксперимента 2-го порядка, содержащую натуральные значения.

46										
47	Рабочая м	атрица с результами	проведения э	ксперимента:	2-го порядка,					
48	38500 C 76-00 C S 10 C 1	содержащая натуральные значения факторов								
49	N	V	S	t	θ	Yj=lnθ				
50	1	0,115	0,11	0,36	5,408111737	1,6879				
51	2	0,454	0,11	0,36	7,986079791	2,0777				
52	3	0,115	0,26	0,36	6,359183572	1,8499				
53	4	0,454	0,26	0,36	9,812921131	2,2837				
54	5	0,115	0,11	1,04	5,922152614	1,7787				
55	6	0,454	0,11	1,04	8,738163135	2,1677				
56	7	0,115	0,26	1,04	7,013942824	1,9479				
57	8	0,454	0,26	1,04	10,80598341	2,3801				
58	9	0,072011446	0	0	5,150531947	1,6391				
59	10	0,72502363	0	. 0	10,28925349	2,3311				
60	11	0	0,082042782	0	6,598220556	1,8868				
61	12	0	0,348598615	0	9,039465079	2,2016				
62	13	0	0	0,250750039	7,136339715	1,9652				
63	14	0	0	1,493120405	8,352826629	2,1226				
64	15	0	0	0	7,807618595	2,0551				
65	16	0	0	0	7,951813374	2,0734				
66	17	0	0	0	7,958973227	2,0743				
67	18	0	0	0	7,820902835	2,0568				
68	19	0	0	0	7,852249098	2,0608				
69	20	0	0	0	8.05102973	2,0858				

Рис. 2. Рабочая матрица проведения эксперимента

Доверительные интервалы коэффициентов при 5%-м уровне значимости представлены на рис. 3. Коэффициенты b_{12} , b_{13} , b_{23} по абсолютной величине оказались меньше доверительного интервала, поэтому их можно считать статистически незначимыми и исключить из уравнения регрессии.

127			1							
28	Определение дис	персию восп	роизводимости	и дисперсии	коэффициен	тов регресси	ıt			
29				1		1				
30	Дисперсия воспроизв	юдимости S (y)(2.33)							
131	-0,0126			=0df2	2,42947E-05	Sbo=	0,004928962			
32	0,0057			Sibi	1,06736E-05	Sbi	0,00326705			
33	0,0066			Sfloij	1,82363E-05	Sbij	0,004270403			
34	-0,0109			S ² bii	1,01313E-05	Sbii	0,00318297			
35	-0,0069				100		100			
36	0,0181									
137	0,000145768									
38										
39	Доверительные интервалы									
140										
41	t-распределение Стьюдента для уровня значимости a=0,05 и числа f2=5	2,570581836	Доверительны й интервал b0	Доверительн ый интервал bi	Доверитель ный интервал bij	Доверительн ый интервал bii				
42			0,0126703	0,008398219	0,010977419	0,008182085				
143			4							
144	5									
145	Определение значимости	коэффициен	тов регресси	H						
146	N N N N N N N N N N N N N N N N N N N	30 0000	L		8					
47	b0	b1	b2	b3	b12	b13	b23	b11	b22	b33
48	Значимый	Значимый	Значимый	Значимый	Незначимый	Незначимый	Незначимый	Значимый	Значимый	Значимый
49		4								
150										

Рис. 3. Определение доверительных интервалов и значимости коэффициентов регрессии

В результате было получено следующее уравнение регрессии:

$$y = 2,0677 + 0,2056x_1 + 0,0935x_2 + 0,0466x_3 - 0,0292x_1^2 - 0,0083x_2^2 - 0,0084x_3^2$$
. (5)

Проверка гипотезы об адекватности модели, представленной уравнением (5), показала, что модель адекватна при 5%-м уровне значимости.

Уравнение (5) для рассматриваемой области изменения факторов дает возможность предложить следующую математическую модель процесса, если подставить в него вместо кодированных натуральное значение факторов, используя для этого соотношение (4):

$$\theta = 14,224 \cdot V^{0,1162-0,062 \ln V} S^{0,0571-0,45 \ln S} t^{0,1138-0,03 \ln t}.$$
 (6)

Зависимость (6) позволяет определить температуру резания в достаточно широком диапазоне, изменяя режимы резания при обработке точением стали 20. По уравнению (6) может быть построена номограмма, которая позволит в практических условиях определять температуру резания при выбранных значениях элементов режима резания.

Литература

- 1. Спиридонов, А. А. Планирование эксперимента при исследовании технологических процессов / А. А. Спиридонов. М.: Машиностроение, 1981. 184 с.
- 2. Пучков, А. А. Применение теории планирования эксперимента для математического моделирования элементов технологических процессов / А. А. Пучков, С. А. Щербаков. Гомель: ГПИ, 1993. 72 с.

ПРЕЗЕНТАЦИЯ ПРОГРАММНОГО ПРОДУКТА ДЛЯ ИССЛЕДОВАНИЙ КОЛОРИМЕТРИЧЕСКИХ СВОЙСТВ ОБЪЕКТОВ НА ОСНОВЕ ПИКСЕЛЬНОЙ ГРАФИКИ

Ю. С. Миргород

Белорусский национальный технический университет, г. Минск Научный руководитель Е. Н. Савкова

В рамках ГПНИ на 2016—2020 гг. «Фотоника, опто- и микроэлектроника» и «Информатика, космос и безопасность» было разработано исследовательское программное обеспечение «Меtrum», которое автоматизирует анализ данных для определения размера оптимальной области изображения по критерию минимума неопределенности измерения интенсивностей в красном, зеленом и синем цветовых каналах. Важным условием решения исследовательских задач на основе технологий пиксельной графики является корректный выбор параметров цифровых изображений: апертуры и времени экспозиции цифровой камеры, формата и размеров $N \times M$ активной области. Применительно к исследованиям фотометрических и колориметрических характеристик протяженных объектов необходимо определить оптимальные рабочие области пифровых изображений, а также динамический диапазон метода.

Постановка задачи. Пусть в трехмерном пространстве задан протяженный объект. Для цифровых изображений данного объекта в цветовом пространстве RGB (sRGB, Adobe RGB) необходимо определить наименьший размер области исследования, который обеспечивает выполнение условия минимума неопределенности интенсивности в трех каналах цветового пространства в пределах всего динамического диапазона.

В качестве примера тест-объекта протяженного объекта выбран участок безоблачного неба в дневное время суток (рис. 1), который представляет модель первичного равнояркого излучателя. Для охвата всего динамического диапазона исследуемого объекта выполнена серия цифровых изображений с изменяющимся временем экспозиции.

Рис. 1. Цифровые изображения тест-объекта