МЕТОДИКА ОПРЕДЕЛЕНИЯ МОЩНОСТИ, РАССЕИВАЕМОЙ КРИСТАЛЛОМ МОЩНЫХ ІВВТ-МОДУЛЕЙ, ПО ТЕМПЕРАТУРНОМУ ГРАДИЕНТУ

Т. Рутковскис

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Республика Беларусь

Научный руководитель С. Н. Кухаренко

Введение. Цель метода: разработка методики защиты полупроводниковых устройств от перегрева, определение мощности, рассеиваемой кристаллом, на основе калориметрического метода.

Одной из основных причин отказов силовых IGBT-модулей является перегрев, приводящий к плавлению припоя под кристаллом, а также растрескиванию кристалла и его смещению.

В наибольшей мере эта проблема относится к устройствам, работающим в тяжелых условиях эксплуатации – на транспорте и в энергетике.

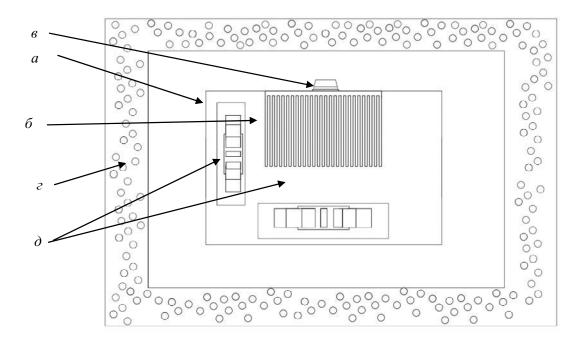
Для предотвращения выхода из строя оборудования предъявляют высокие требования не только к IGBT-модулям, но и к драйверам, которые контролируют температурные режимы.

Контроль рассеиваемой мощности позволяет анализировать состояние потерь в IGBT-модулях. Так как модули состоят из нескольких пар ключей (IGBT-транзисторов), работающих на высоких частотах, наиболее рационально определять мощность путем превращения ее в тепловую энергию с последующим измерением температуры радиатора.

Для защиты IGBT-модуля выбран калориметрический метод косвенного определения рассеиваемой мощности кристалла. Применение этого метода оправдано простатой превращения энергии электрического тока в теплоту. Полагается, что измеряемая мощность пропорциональна отношению тепловой энергии к времени разогрева либо пропорциональна произведению теплоемкости рабочего тела и скорости приращения температуры.

Теплоемкость определяется экспериментально при заданной мощности и скорости приращения температуры. Полученное значение теплоемкости в дальнейшем используют в качестве константы, предположив, что энтальпия в металлах крайне мала.

Таким образом, данное предположение можно записать в следующем виде:


$$P = \frac{Q}{dt} = C\frac{d\theta}{dt},\tag{1}$$

где Q — количество теплоты, Дж; C — теплоемкость рабочего тела, Дж/°С; $d\theta$ — приращение температуры рабочего тела, °С; t — время, с.

Выражение (1) справедливо только при идеальной теплоизоляции рабочего тела.

Описание проведения эксперимента по определению теплоемкости. В эксперименте использован IGBT-транзистор IHW20N135R5XKSA1, помещенный в измерительную установку, которая имитирует реальные условия работы полупроводникового прибора. Эта установка позволяет определить значение теплоемкости и мощность рассеивания.

На рис. 1 представлена структура измерительной установки с размещенным в ней IGBT-транзистором.

Рис. 1. Вид измерительного стенда: a — корпус; δ — медный радиатор; ϵ — ІGВТ-модуль; ϵ — термоизоляционный материал (пенопласт); δ — вентиляторы

В случаях, когда имеется плохая изоляция от теплообмена с окружающей средой, выражение (1) примет вид [2]:

$$P = C\frac{d\theta}{dt} + \frac{\theta}{R_{\rm rm}},\tag{2}$$

либо

$$P = cm \frac{d\theta}{dt} + k_{\text{\tiny TO}} S_{\text{\tiny OXJI}} \theta, \tag{3}$$

где P — мощность, рассеиваемая в рабочем теле; $\frac{d\theta}{dt}$ — скорость изменения температуры рабочего тела; θ — разность температуры рабочего тела и окружающей среды; $R_{\text{тп}}$ — тепловое сопротивление между рабочим телом и окружающей средой; $k_{\text{то}}$ — коэффициент теплоотдачи с поверхности (количество теплоты, рассеиваемое с 1 м 2 поверхности охлаждения рабочего тела в течение 1 с при разности между его температурой и температурой окружающей среды в °C); $S_{\text{охл}}$ — площадь охлаждения.

Решая дифференциальное уравнение (3), при условии, что в начальный момент времени (t=0) рабочее тело имеет некоторое превышение температуры θ_0 над окружающей средой:

$$\theta = \theta_1 (1 - e^{-t/T}) + \theta_0 e^{-t/T}, \tag{4}$$

где T – постоянная времени.

При этом

$$T = cm/(k_{\text{To}}S_{\text{OXJ}}). \tag{5}$$

Измерения проводятся при постоянном токе на изолированном от теплообмена с окружающей средой стенде.

На рис. 2 показана зависимость скорости изменения температуры от времени при разных мощностях.

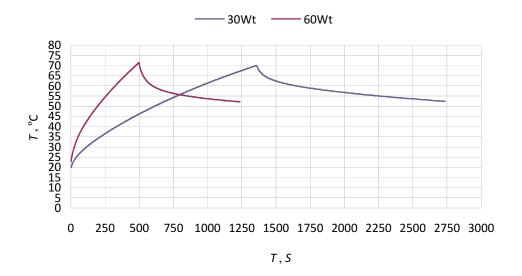


Рис. 2. График скорости приращения температуры

Проведя аппроксимацию функции скорости приращения температуры, получим выражение, подобное (4). Оттуда, определив постоянную времени T и зная максимальную температуру θ_1 , можно выразить теплоемкость c:

$$c = \frac{TP}{O_1 m}. (6)$$

Полученное экспериментальным путем значение теплоемкости является константой и может использоваться для определения мощности рассеивания по формуле (1) (для полупроводников, изолированных от окружающей среды) или по формуле (2) (с теплообменом).

Заключение. Предложенная методика защиты полупроводниковых устройств от перегрева на основе калориметрии позволяет определять мощность, рассеиваемую кристаллом по скорости приращения температуры и экспериментального измерения теплоемкости теплоотвода.

Данная методика является универсальной для различных полупроводниковых приборов.

Литература

- 1. Ремез, Г. А. Курс основных радиотехнических измерений / Г. А. Ремез. М., 1966. 159 с.
- 2. Измерение мощности на СВЧ / М. И. Билько [и др.]. М.: Сов. радио, 1976. 168 с.