ПРИМЕНЕНИЕ ВИРТУАЛЬНЫХ СИСТЕМ ЧПУ ДЛЯ НАПИСАНИЯ И ТЕСТИРОВАНИЯ УПРАВЛЯЮЩИХ ПРОГРАММ ДЛЯ СТАНКОВ С ЧПУ

А. Е. Лисун

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Республика Беларусь

Научный руководитель Н. А. Старовойтов

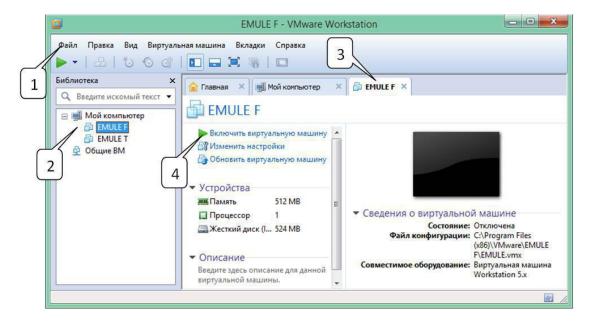
Существует ряд проблем, которые возникают при написании управляющих программ для станков с ЧПУ на персональных компьютерах (ПК), а именно: неконгруэнтность (несовместимость) G и M функций и замкнутых контуров; неправильное движение по обрабатываемому контуру из-за грубых ошибок, что приводит к поломке инструмента и повреждению механизмов дорогостоящего станка; невозможность определить при прогоне программы на станке, с чем связана ошибка (с неисправностью станка с ЧПУ или с ошибками программы); неправильная структура управляющих программ (УП) и неправильный формат кадра.

Для решения этих проблем все ведущие фирмы-производители систем ЧПУ создают образы реальных систем, так называемые виртуальные ЧПУ, которые монтируются на ПК и позволяют составлять УП, осуществлять их прогон в 2D- и 3D-среде с целью выявления ошибок и последующей коррекции УП. При внимательной проверке выявляется от 90 до 100 % ошибок.

Виртуальные системы ЧПУ часто называют эмуляторами. Они могут работать в операционной системе (ОС) Windows с помощью специальной программы VMware Workstation для создания, редактирования и запуска виртуальных машин. Как правило, процесс создания УП и их отработка на станке требует тщательной их проверки на станке с целью выявления ошибок и их устранения. Это большие материальные затраты, которые выражены в неэффективной покадровой работе станка из-за довольно длительной процедуры отработки УП.



Рис. 1. Главное окно программы VMware Workstation


Для использования виртуальной системы ЧПУ серии NC200 созданы образы «Emule-T» и «Emule-F» производителем в Российской Федерации ООО «Балт-

Систем» в Санкт-Петербурге, и программа VMware Workstation, с помощью которой можно запустить данные образы на персональных компьютерах (ПК) с ОС Windows 7.

Образы «Emule» является программами, которые позволяют практически для любого станка с системой ЧПУ NC200 с числом координат до 16-ти создать виртуальную систему-эмулятор.

Для того чтобы запустить данные образы, необходимо последовательно выполнить следующие действия (рис. 2):

- 1) в главном меню с помощью команды «Файл/Открыть» находим на внешнем носителе файл образа;
 - 2) выбираем в графе «Библиотека» нужный образ системы;
 - 3) переходим на вкладку появившегося образа «Emule-F» (фрезерный вариант);
 - 4) нажимаем «Включить виртуальную машину».

Puc. 2. Окно запуска виртуальной машины в VMware

В появившемся новом окне (рис. 3) выбераем цифру **2** для запуска нужной системы ЧПУ (в данном случае запускаем NC200), затем в появившемся новом перечне цифру **6** с помощью клавиш ПК для автоматического выбора разрядности цвета системы.

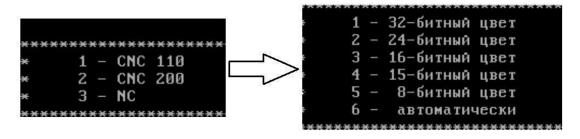


Рис. 3. Окно выбора системы ЧПУ и ее разрядности цвета

Для написания управляющих программ используется CNC редактор. В редакторе можно выполнять следующие операции: объявлять название новых программ и

удалять программы; производить написание новых программ с последующим их редактированием; редактировать старые программы; производить их запись на внешние и с внешних носителей, в том числе и через сеть Интернет; создавать виртуальные диски (облако); производить прогон программы в покадровом и автоматическом режимах, 2D- и 3D-формате и их отладку. Более подробное описание работы CNC редактора системы ЧПУ NC200 содержится в руководстве по ее эксплуатации в свободном доступе на официальном сайте фирмы-производителя «ООО Балт-Систем» (www.bsystem.ru).

Далее описаны преимущества прогона УП в виртуальной системе ЧПУ NC200 в 3D- и 2D-форматах на примере программы по обработке детали «Шестерня» сложного фасонного профиля.

На рис. 4 представлены изображения начало и результат прогона программы по обработке детали «Шестерня» в 3D-формате. Прогон программы в 3D-формате позволяет выявить: неконгруэнтность (несовместимость) G и M функций и замкнутых контуров; неправильный синтаксис формата программы и кадра; неправильное движение по обрабатываемому контуру из-за грубых ошибок, что приводит к поломке инструмента и повреждению механизмов станка; неправильную структуру управляющей программы и неправильный формат кадра.

Рис. 4. Прогон УП по обработке детали «Шестерня» сложного фасонного профиля в виртуальной системе ЧПУ в 3D-формате: a — начало; δ — результат

На рис. 5 представлен результат прогона программы по обработке детали «Шестерня» в 2D-формате. Прогон программы в 2D-формате позволяет: проследить траекторию движения программируемой точки инструмента в покадровом режиме на траектории обрабатываемого контура; по отслеживаемым координатам откорректировать траекторию движения инструмента на холостых и рабочих ходах; отследить правильность ввода корректоров на диаметр и длину инструмента; избежать грубых ошибок при выборе направления движения инструмента по контуру.

Секция І. Машиностроение

Рис. 5. Прогон УП по обработке детали «Шестерня» сложного фасонного профиля в виртуальной системе ЧПУ в 2D-формате