ПРИМЕНЕНИЕ АТНУ В СИСТЕМАХ ОБОРОТНОГО ВОДОСНАБЖЕНИЯ ПРОМЫШЛЕННЫХ ПРЕДПРИЯТИЙ НА ПРИМЕРЕ ОАО «ГОМЕЛЬСКИЙ ХИМИЧЕСКИЙ ЗАВОД»

Д. А. Тереня

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Республика Беларусь

Научный руководитель Н. А. Вальченко

Тепловой насос – устройство для переноса тепловой энергии от источника низкопотенциальной тепловой энергии (с низкой температурой) к потребителю (теплоносителю) с более высокой температурой [1]. Термодинамически тепловой насос аналогичен холодильной машине. Однако если в холодильной машине основной целью является производство холода путем отбора теплоты из какого-либо объема испарителем, а конденсатор осуществляет сброс теплоты в окружающую среду, то в тепловом насосе картина обратная. Конденсатор является теплообменным аппаратом, выделяющим теплоту для потребителя, а испаритель — теплообменным аппаратом, утилизирующим низкопотенциальную теплоту: вторичные энергетические ресурсы и (или) нетрадиционные возобновляемые источники энергии.

В зависимости от принципа работы тепловые насосы подразделяются на компрессионные и абсорбционные. Компрессионные тепловые насосы всегда приводятся в действие с помощью механической энергии (электроэнергии), в то время как абсорбционные тепловые насосы могут также использовать тепло в качестве источника энергии (с помощью ВЭР или топлива).

В зависимости от источника отбора тепла тепловые насосы подразделяются на [2]:

- 1. Геотермальные используют тепло земли, наземных либо подземных грунтовых вод;
 - 2. Воздушные источником отбора тепла является воздух.
- 3. Использующие производное (вторичное) тепло (например, тепло трубопровода центрального отопления). Подобный вариант является наиболее *целесообразным для промышленных объектов*, где есть источники паразитного тепла, которое требует утилизации.

В соответствии с договором № 37-15 от 04.05.2015 г. ОАО «Белгорхимпром» проведено энергетическое обследование ОАО «Гомельский химический завод» [3].

Энергетическое обследование ОАО «Гомельский химический завод» выполнено с целью определения эффективности использования топливно-энергетических ресурсов и выявления резервов их экономии.

В результате энергетического обследования разработаны мероприятия по эффективному использованию топливно-энергетических ресурсов ОАО «Гомельский химический завод».

С целью экономии топливно-энергетических ресурсов ОАО «Гомельский химический завод» рекомендуется модернизация цеха серной кислоты с внедрением Системы Рекуперации Тепла Абсорбции. [3]

В настоящее время обеспечение электроэнергией ОАО «Гомельский химический завод» осуществляется паросиловым участком, где установлены две паровых турбины типа П-6 и Р-6.

Параметры свежего пара: давление P = 3.5 МПа; температура t = 435 °C.

Параметры пара после противодавленческой турбины P-6, направляемого на производство: давление P=0.6 МПа; температура t=250 °C.

Модернизация цеха серной кислоты с внедрением Системы Рекуперации Тепла Абсорбции дополнительной установки производства серной кислоты, использующей технологию Рекуперации Тепла Абсорбции (HRS), разработанную фирмой «MECS,Inc.», позволит получить дополнительные ВЭР в виде пара давлением P=0.6 МПа и температурой t=160 °C [3].

В рамках данной работы была разработана схема применения АТНУ для системы оборотного водоснабжения СКЦ-2 ОАО «Гомельский химический завод» для варианта реконструкции цеха с использованием технологии Рекуперации Тепла Абсорбции (HRS) и установкой конденсационной турбины П-12. Согласно проведенному энергоаудиту [3] при реконструкции СКЦ-2 с использованием технологии HRS появляются дополнительные ВЭР в виде пара давлением P = 0.6 МПа

и температурой $t=160\,^{\circ}\mathrm{C}$ в количестве 40 т/ч. Такой вариант реконструкции предусматривает использование данного ВЭР в технологических целях, перевести турбину П-6 в конденсационный режим и избыток пара после турбины П-12 направлять в конденсатор. Ранее покрытие технологической нагрузки в виде пара осуществлялось производственным отбором от турбин. После реконструкции цеха производственный отбор не осуществляется, а идет в конденсаторы турбин. Горячий конденсат после турбины согласно плану реконструкции использовался для покрытия КБН предприятия в горячей воде, направлялся в КУ СКЦ-2 и использовался в технологических целях.

Предлагаемая схема предусматривает установку АТНУ параллельно существующей системе оборотного водоснабжения. При работе АТНУ будет осуществляться охлаждение оборотной воды, используемой для охлаждения сернистой печи и турбин СКЦ-2, а также подогрев сетевой воды в общезаводской сети за счет использования пара при производственном отборе турбин П-6 и П-12.

При данной схеме использования АТНУ решаются две основные задачи:

- рациональное использование дополнительного ВЭР в виде избыточного пара при производственном отборе после турбин вместо охлаждения в конденсаторе;
- сокращение потребления электроэнергии системой оборотного водоснабжения СКЦ-2 ОАО «Гомельский химический завод» за счет снижения нагрузки на градирни (приводы насосов и вентиляторов).

Данная схема может работать как в связке СОВС СКЦ-2, либо как резервная, предполагающая покрытие базовой нагрузки за счет работы АТНУ и покрытие пиковых нагрузок от градирен СОВС.

Подбор оборудования для предложенной схемы осуществлялся исходя из технических характеристик, заявленных производителями, и с учетом температурных графиков воды в СОВС и сетевой воды в общезаводской сети предприятия.

Для экономического обоснования мероприятия по внедрению в АТНУ в проект реконструкции СКЦ-2 произведен расчет снижения потребления электроэнергии СОВС цеха за счет использования тепловых насосов по укрупненным данным согласно [3].

Предполагаемый срок окупаемости мероприятия составляет четыре года при максимальном использовании АТНУ, т. е. установка должна работать нормальном режиме и без перебоев. Но, учитывая специфику работы СКЦ-2 ОАО «Гомельский химический завод», т. е. неравномерную работу цеха, пульсирующий выпуск серной кислоты и, соответственно, непостоянная выработка пара КУ, предполагается, что срок окупаемости должен увеличиться в 2,5–3 раза. Также дополнительное ограничение мероприятия в том, что данный вариант реконструкции цеха рассматривался в 2015 г. и был временно отложен до 2018 г. по некоторым техническим особенностям.

Балансовая схема установки по производству серной кислоты с внедрением Системы Рекуперации Тепла Абсорбции и АТНУ приведена на рис. 1.

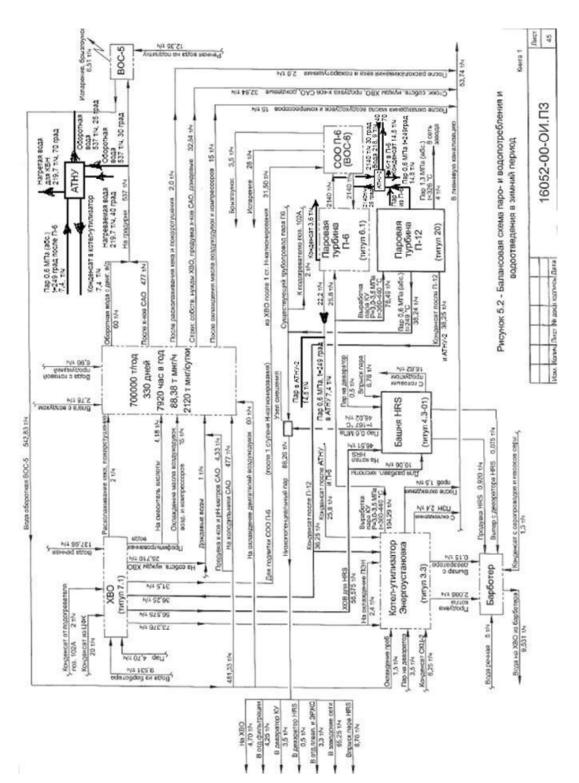


Рис. 1. Балансовая схема установки по производству серной кислоты с внедрением Системы Рекуперации Тепла Абсорбции (HRS) и АТНУ для СОВС

Секция III. Энергетика

Литература

- 1. Тепловой насос // Большая совет. энциклопедия : в 30 т. / гл. ред. А. М. Прохоров. 3-е изд. М. : Совет. энциклопедия, 1969—1978.
- изд. М. . Совет. энциклопедия, 1909–1976.

 2. System Theory Models of Different Types of Heat Pumps // WSEAS Conference in Portoroz. Slovenia, 2007 (англ.).
- 3. Энергоаудит ОАО «Белгорхимпром» для ОАО «Гомельский химический завод». Гомель, 2015.