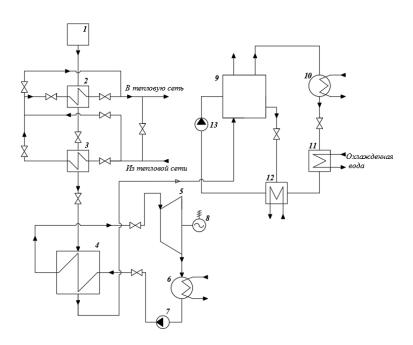
ТРИГЕНЕРАЦИЯ ЭНЕРГИИ В ТУРБОДЕТАНДЕРНЫХ ФРЕОНОВЫХ УСТАНОВКАХ С ИСПОЛЬЗОВАНИЕМ ВТОРИЧНЫХ ЭНЕРГЕТИЧЕСКИХ РЕСУРСОВ НА СВЕРХКРИТИЧЕСКИХ ПАРАМЕТРАХ

А. И. Аршуков, П. А. Ковальчук


Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Республика Беларусь

Научный руководитель А. В. Овсянник

Одним из основных направлений энергосбережения является максимальное использование низкопотенциального тепла, которое в больших количествах сбрасывается в окружающую среду; решение данной проблемы можно осуществить с помощью тригенерационных установок [4].

В качестве рабочего тела турбодетандерного цикла используется озонобезопасный фреон R410a. Выбор низкокипящего рабочего тела (НКРТ) обусловлен недостаточностью внимания к рассмотрению установок, работающих на основе невзрывобезопасных и озонобезопасных фреонов [1].

Целью работы является определение эксергетического КПД турбодетандерной теплоутилизационной установки, работающей на сверхкритических параметрах рабочего тела, и сравнение полученных данных с данными этой же установки, работающей на докритических параметрах рабочего тела.

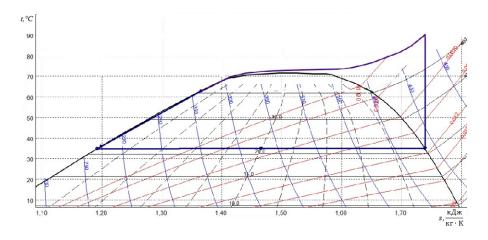


Рис. 1. Тригенерационная установка на базе турбодетандера и АбТТ: I – источник ВЭР; 2, 3 – теплообменник; 4, 11 – испаритель; 5 – турбодетандер; 6, 10 – конденсатор; 7, 13 – насос; 8 – электрогенератор; 9 – генератор АбТТ; 12 – абсорбер

Принцип работы установки следующий: теплота от ВЭР подается на сетевые подогреватели, где получается тепло в виде горячей воды, и отправляется потребителю, далее ВЭР направляются на испаритель турбодетандера, где происходит кипение НКТР, пары НКТР отправляются на турбину, в которой происходит расширение

перегретого хладагента до насыщенного состояния и получение электрической энергии. Насыщенный пар после турбины поступает в конденсатор, где происходит конденсация паров хладагента, затем рабочее тело поступает в насос и цикл замыкается. После турбодетандера отработавшие ВЭР направляются на генератор АбТТ для получения холода, в виде воды с температурой $4-5\,^{\circ}\mathrm{C}$.

Для проведения эксергетического анализа нам понадобятся значения энтропии и энтальпии реперных точек цикла [3]. Для получения этих значений построим цикл установки в t—s-диаграмме.

Puc. 2. Диаграмма t—s для фреона R410a с прямым циклом на сверхкритических параметрах

Для проведения эксергетического анализа примем следующие допущения: температура окружающего среды составляет $t_{\rm o.c} = 20$ °C, количество и температура ВЭР, достаточные для обеспечения необходимого температурного напора, при котором температура паров фреона на выходе из испарителя составит 75 °C. Для обеспечения наглядности полученных данных зададимся еще двумя значениями температуры паров фреона на выходе из испарителя, а именно: 80 и 90 °C. Данные значения выбраны для расчета сверхкритических параметров нагрева и давления выше $p_{\rm kp} = 4.9$ МПа.

Построив цикл утилизационной установки в t–s-диаграмме для R410a (рис. 2), получим следующие данные для проведения эксергетического анализа (табл. 1).

Таблица 1 Исходные данные для проведения эксергетического анализа

Наименование параметра	Обозначение	Значение для 75°C	Значение для 80 °C	Значение для 90°C
Температура окружающей среды	t₀, °C		20	
Температура ВЭР на входе в испаритель	<i>t</i> ′ _{ВЭР} , °C	170		
Температура ВЭР на выходе из испарителя	t″ _{B∋P} , °C		85	
Температура фреона после испарителя	$t_{xa}^{"}$, °C	75	80	90
Температура фреона после конденсатора	t'_{xa} , °C	35	35	35
Энтальпия фреона в начале расширения	h_5 , кДж/кг	442,34	444,5	450,1

Окончание табл. 1

Наименование параметра	Обозначение	Значение для 80 °C	Значение для 90°C
Энтальпия фреона в конце расширения	<i>h</i> ′ ₅ , кДж/кг	425,73	
Энтропия процесса расширения	<i>s</i> ₅, кДж/кг · К	1,7469	
Действительная энтропия в конце расширения	s_{5 д, кДж/кг · К	1,7544	

 Таблица 2

 Результаты эксергетического анализа теплоутилизационной установки

Наименование параметра	Обозначение	Значение для 75°C	Значение для 80 °C	Значение для 90°C
Эксергетическая температура ВЭР	$ au_{ ext{B} ext{3P}}$	0,84	0,84	0,84
Эксергетическая температура фреона	$\tau_{_{xa}}$	0,63	0,65	0,66
Эксергетический КПД испарителя	$\eta_{_{ m ucn}}$	0,75	0,77	0,78
Коэффициент использования эксергии	R	0,004	0,0041	0,004
Относительная потеря эксергии в испарителе	_{висп}	0,25	0,23	0,22
Относительная потеря эксергии в детандере	$\xi_{_{ m Jet}}$	0,012	0,013	0,014
Относительная потеря эксергии в конденсаторе	ξ _{конд}	0,03	0,03	0,04
Эксергетический КПД установки	$\eta_{ m ycr}$	0,51	0,52	0,53

Эксергетический анализ показывает, что установки по утилизации низкопотенциального тепла, работающие на невзрывобезопасном и озонобезопасном низкокипящем рабочем теле, обладают высоким потенциалом повышения эффективности использования топливно-энергетических ресурсов.

По полученным результатам можно сделать вывод о том, что использование НКТР в турбодетандерных фреоновых установках актуально на сверхкритических параметрах в сравнении с докритическими, что подтверждается эксергетическим анализом.

Литература

- 1. Экономическая эффективность утилизации низкопотенциальных вторичных энергетических ресурсов посредством установки турбины на низкокипящем рабочем теле / А. Л. Шубенко [и др.] // Энергосбережение. Энергетика. Энергоаудит. 2010. № 6. С. 12–22.
- 2. Гринман, М. И. Перспективы применения энергетических установок малой мощности с низкокипящими рабочими телами / М. И. Гринман, В. А. Фомин // Энергомашиностроение. 2006. № 1. С. 63–69.
- 3. Бродянский, В. М. Эксергетический метод термодинамического анализа / В. М. Бродянский. М.: Энергия, 1973. 182 с.
- 4. Клименко, А. В. Схемы тригенерационных установок для централизованного энергоснабжения / А. В. Клименко, В. С. Агабабов, И. П. Ильина // Теплоэнергетик. 2016. № 6. С. 36–43.