АВТОМАТИЗАЦИЯ РАСЧЕТА ПОТЕРЬ МОЩНОСТИ ЧАСТОТНО-УПРАВЛЯЕМЫХ АСИНХРОННЫХ ДВИГАТЕЛЕЙ ОТ ВЫСШИХ ГАРМОНИК НАПРЯЖЕНИЯ

Е. А. Власенко

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Республика Беларусь

Научный руководитель Т. В. Алферова

Применение регулируемых электроприводов позволяет повысить эффективность производства, расширить возможность механизации и автоматизации технологических процессов, при этом улучшить энергетический коэффициент (соs ф) асинхронного двигателя [1]. В настоящее время в эксплуатации находится большое количество электроприводов на базе частотно-управляемых асинхронных двигателей, которые питаются напряжением ступенчатой формы от полупроводникового преобразователя частоты с автономным инвертором [2].

Несинусоидальность напряжения при частотном регулировании приводит к возникновению дополнительных потерь в обмотках и магнитопроводе от высших гармоник тока и магнитного потока, созданных высшими гармониками питающего напряжения.

В общем случае при частотном управлении двигателем напряжение на зажимах статора регулируется как в функции относительной частоты (коэффициента регулирования), абсолютного скольжения, определяемого нагрузкой на валу, а относительное напряжение есть функция α и β .

Основные потери мощности: электрические, магнитные и механические зависят от коэффициента регулирования и рассчитывались по известным методикам, при этом определяющими факторами, влияющими на изменение намагничивающего тока и магнитных потерь, являлись магнитный поток и частота питающего напряжения.

В данной работе на основании метода «гармонических двигателей» [3] был разработан алгоритм, учитывающий влияние высших гармоник напряжения на потери мощности в АД. Блок-схема алгоритма приведена на рис. 1.

Для автоматизации расчетов потерь мощности в частотно-управляемых асинхронных двигателях была разработана компьютерная программа «Hz asynchronous motor». Программа написана на языке DELPHI, имеет простой и интуитивно понятный интерфейс, что позволяет затрачивать минимум времени при вводе исходных данных. С использованием данной программы был выполнен расчет потерь мощности в двигателе серии AUP160S2, мощностью 5,5 кВт, при этом были получены следующие результаты:

- электрические потери в обмотках статора от всех высших гармоник напряжения на 12 % больше электрических потерь основной частоты;
- электрические потери в обмотках ротора от всех высших гармоник напряжения на 70 % больше электрических потерь основной частоты;
- магнитные потери от всех высших гармоник напряжения на 6,7 % больше магнитных потерь основной частоты и с увеличением номера гармоники магнитные потери резко убывают.

Составлена плановая калькуляция себестоимости разработки программного обеспечения «Hz asynchronous motor».

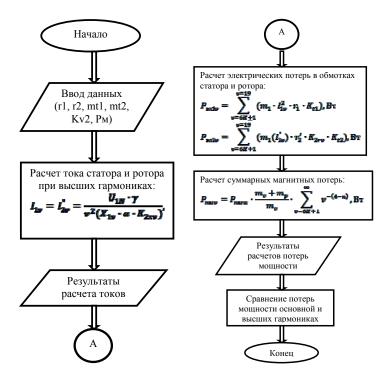


Рис. 1. Блок-схема алгоритма расчета

Компьютерная программа может применяться как на этапе проектирования электродвигателей, так и в процессе их эксплуатации.

При этом учет дополнительного нагрева электродвигателей и потерь мощности, вызванных ухудшением качества электрической энергии, позволит предотвратить преждевременный выход из строя электродвигателя, внезапное отключение потребителя и повысить эффективность его работы.

Литература

- 1. Новиков, Г. В. Частотное управление асинхронными электродвигателями / Г. В. Новиков. М. : Изд-во МГТУ им. Н. Э. Баумана, 2016. 498 с.
- 2. Петренко, А. Н. Дополнительные потери мощности частотно-управляемого асинхронного двигателя от высших гармоник напряжения / А. Н. Петренко, В. И. Танянский, Н. Я. Петренко // Электротехника и электромеханика. 2012. № 5. С. 34–35.
- 3. Жежеленко, И. В. Высшие гармоники в системах электроснабжения предприятий / И. В. Жежеленко. М.: Энергоатомиздат. 2000. 331 с.