СОВРЕМЕННЫЕ ИСТОЧНИКИ СВЕТА КАК СРЕДСТВО ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ ИСПОЛЬЗОВАНИЯ ЭЛЕКТРОЭНЕРГИИ

М. Д. Геращенко

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Республика Беларусь

Научный руководитель Т. В. Алферова

Республика Беларусь, также как Швейцария, Дания и Япония, относится к числу государств, не имеющих в достаточном количестве собственных топливно-энергетических ресурсов (ТЭР). Однако опыт этих стран показывает, что экономика может динамично развиваться за счет эффективного использования ТЭР, проведения энергосберегающих мероприятий, освоения передовых энергоэффективных технологий, снижения издержек производства [1].

Республика Беларусь не располагает достаточными природными топливноэнергетическими ресурсами и вынуждена закупать около 80 % потребляемых ТЭР. Это делает экономику зависимой от внешних поставщиков и уязвимой по отношению к резким колебаниям цен на энергоресурсы.

В современных условиях режим экономии диктуется не только недостатком собственных ТЭР в топливно-энергетическом балансе Республики, но и необходимостью снижения себестоимости производимой продукции и повышения ее конкурентоспособности на мировом рынке. Эффективность энергоиспользования характеризуется показателем энергоемкости, а это значит, что финансовые средства должны направляться не на закупку дополнительных объемов топлива, а на внедрение современных технических решений и технологий, позволяющих при меньших затратах получить больше продукции с меньшей себестоимостью, что улучшит состояние экономики нашей страны.

В настоящее время пятая часть энергии, произведенной в Республике, расходуется на освещение, причем основная доля приходится на уличное, промышленное и освещение торгово-производственных площадей. Такие большие затраты энергии на эти цели связаны, в первую очередь, с применением устаревших источников света. Следует отметить, что эти расходы сегодня не являются неизбежными, поскольку прогресс в создании новых высокоэффективных источников света дает возможность кардинального решения проблемы [2].

Современное наружное освещение должно отвечать пяти основным критериям [3]:

- первый критерий концепции видимость, т. е обеспечение нормальных зрительных условий для водителей и пешеходов, а также оптимальные количественные и качественные параметры освещения, которые регламентируются действующими нормами;
- второй критерий безопасность. Количество дорожно-транспортных происшествий и противоправных действий значительно снижается при хорошем освещении города, причем затраты несопоставимо малы по сравнению с выгодой. На сегодняшний день качество освещения население городов напрямую связывают с уровнем личной безопасности;
- третий критерий эстетика. Общество ждет от освещения не только выполнения прямых функциональных задач, но и удовлетворения эстетической потребности в прекрасном. Ввиду обилия средств освещения и многообразия объектов проблемы в данном случае не существует. Однако эстетика должна быть экономичной и целесообразной;

- четвертый критерий экономика иногда является решающим фактором для заказчика. Необходимо учитывать, что кроме капитальных затрат существуют также затраты на эксплуатацию и ремонт, которые могут сделать проект невыгодным;
- последний пятый критерий общественная функция освещения. Понятие гармоничной световой среды предполагает создание благоприятного психологического климата, оказывающего положительное влияние на реализацию общественных функций, и является предпосылкой для оживления городской жизни.

Для наружного освещения производственных площадей могут применяться дуговые ртутные лампы (ДРЛ, ДНаТ). По сравнению с лампами накаливания они позволяют экономить до 55 % электроэнергии. Еще более ощутимую экономию позволяет получить использование светодиодного освещения.

К основным преимуществам светодиодов можно отнести [4]: срок службы современных светодиодов составляет до 100 000 ч, что эквивалентно 25 годам эксплуатации при 10-часовой работе в день; экономичное использование электроэнергии по сравнению с традиционными источниками света; световая отдача достигает 120 лм/Вт; полная экологическая безопасность, позволяющая сохранять окружающую среду, и отсутствие специальных условий по утилизации; высокая надежность, механическая прочность, виброустойчивость; возможность получения различных спектральных характеристик, в том числе спектрально чистых цветов, без потери в световых фильтрах; отсутствие ультрафиолетового излучения и малое инфракрасное излучение; отсутствие мерцания (стробоскопического эффекта).

Основным недостатком является их высокая цена и необходимость специальной системы охлаждения; кроме того, для сверхмощных светодиодов приходится применять радиаторы, которые зачастую значительно увеличивают габаритные размеры осветительной установки.

В качестве примера выполним расчет экономической эффективности применения светодиодов.

Для освещения наружной территории филиала ОАО «Гомельский комбинат хлебопродуктов» используются 5 светильников РКУ-150 с лампами ДРЛ-150. С целью экономии электроэнергии выполним замену существующих светильников на современные энергоэкономичные светодиодные Sveteco-48.

Светильники Sveteco-48 предназначены для освещения улиц, дорог, площадей, дворов, складов, производств, освещения железнодорожных платформ. Потребляемая мощность от сети переменного тока $-220~\mathrm{B}-75~\mathrm{Bt}$. Являются заменой светильников с использованием ртутных ламп ДРЛ-150, ДРЛ-250. Незаменимы в местах, где требуется экономия электроэнергии и очень высокая надежность.

У светильников Sveteco-48 отсутствует стробоскопический эффект, сила света не меняется во всем диапазоне питающих напряжений. Время выхода на режим составляет 1 с.

Годовое потребление электроэнергии осветительными установками (оптическими приборами) рассчитывается по формуле

$$\Delta W_{\text{on}} = \sum \left[N \cdot K_{\text{c}} \cdot \left(P_{\text{yct.np}}^{\text{cyii}} \cdot K_{\text{np}} - P_{\text{yct.np}}^{\text{3am}} \right) \right] T_{\text{np}},$$

где N — количество осветительных приборов, шт; $K_{\rm c}$ — коэффициент спроса осветительных приборов, 0,85; $P_{\rm ycr.np}^{\rm cyuq}$ — мощность лампы существующего светильника, Вт; $K_{\rm np}$ — коэффициент потерь в пуско-регулирующей аппаратуре; $P_{\rm ycr.np}^{\rm sam}$ — мощность

ламп предлагаемых для замены светильников, Вт; $T_{\rm np}$ — годовое время использования освещения, 3500 ч.

Годовая экономия электроэнергии при замене светильников составит:

$$\Delta W = (5 \cdot 0.85(150 \cdot 1,1-75 \cdot 1))3500 \cdot 10^{-6} = 1,4$$
 тыс. кВт · ч/год или 0,36 т у. т./год.

Стоимость светильников Sveteco-48 составляет 19,4 бел. р. за штуку.

Стоимость строительно-монтажных работ принимаем как 25 % от стоимости оборудования:

$$C_{c.m.p} = 0.25 \cdot 19.4 = 4.85 p.$$

Стоимость проектных работ принимаем как 10 % от стоимости строительномонтажных работ:

$$C_{rr} = 0.1 \cdot 4.85 = 0.48 \text{ p.}$$

Стоимость пуско-наладочных работ принимаем как 3 % от стоимости оборудования:

$$C_{man} = 0.03 \cdot 19.4 = 0.58 \text{ p.}$$

Капиталовложения в мероприятие определяем по формуле

$$K_{0,II} = C_{00} + 0.1C_{0,II} + 0.25C_{00} + 0.03C_{00}$$
;

$$K_{0.0} = 19.4 + 0.1 \cdot 4.85 + 0.25 \cdot 19.4 + 0.03 \cdot 19.4 = 25.31 \text{ p.}$$

Для пяти светильников:

$$K_{0.05} = 25,31.5 = 126,55 \text{ p.}$$

Годовая экономия электроэнергии от реализации данного мероприятия составила 1,4 тыс. кВт · ч/год. По данным отдела главного энергетика филиала ОАО «Гомельский комбинат хлебопродуктов», стоимость 1 кВт · ч электроэнергии составляет 0,26 р./кВт · ч, тогда годовая экономия электроэнергии в стоимостном выражении составляет:

$$C_{\Lambda W} = 1400 \cdot 0,26 = 364$$
 р./год.

Срок окупаемости:

$$C_{Pok} = K_{o,r5}/C_{AW} = 126,55/364 = 0,3$$
 года.

Литература

1. Шенец, Л. В. Эффективность и ресурсоснабжение — основные факторы устойчивого развития экономики в современных условиях / Л. В. Шенец // Технологии, оборудование, качество: материалы 13-го Междунар. симп., Минск, 11–14 мая, 2010 г.

- - Фомин, Н. А. Безэлектродные источники света. Мечта о «Неугасимой лампаде» становится
- реальной / Н. А. Фомин, Д. В. Стахович // Энергия и менеджмент. 2010. Март-апрель. C_{26-27}
 - 3. Преимущества светодиодного освещения // Светодиодные светильники. Промышленное, светодиодное освещение. Уличные, офисные, промышленные светодиодные светильники
 - для ЖКХ. Компания LEDEL светотехника на светодиодах. Режим доступа:
 - https://www.ledel.ru/menuleft/privilege/. Дата доступа: 16.10.2017. 4. Свидерская, О. В. Основы энергосбережения: курс лекций / О. В. Свидерская. – 4-е изд. – Минск: Акад. упр. при Президенте Респ. Беларусь, 2006.