ПРИМЕНЕНИЕ ВЫСОКОЭФФЕКТИВНЫХ ДВУХФАЗНЫХ ТЕПЛОПЕРЕДАЮЩИХ УСТРОЙСТВ В СИСТЕМАХ КОНДИЦИОНИРОВАНИЯ ВОЗДУХА

Н. А. Дорохова

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Республика Беларусь

Научный руководитель А. В. Шаповалов

Итальянская компания Cominter производит широкий спектр теплообменных аппаратов, применяемых в системах кондиционирования воздуха, в том числе теплообменные аккумулирующие батареи, рекуперативные теплообменники воздухвоздух (RCA), фреоновые рекуперативные теплообменники (RCD) [1].

На промышленных предприятиях, в случае, если возникает необходимость обработки воздуха, например, при наличии пыли или взвесей, масла, прибегают к использованию аккумулирующих батарей без ребер (рис. 1). В качестве материала труб используется нержавеющая и углеродистая сталь с толщиной листа от 1,5 до 3 мм. Тестирование осуществляется путем пропускания внутри труб батареи, погруженной в ванну с водой, сжатого воздуха при давлении, которое варьирует от 10 до 30 бар; эта операция позволяет выявить отклонения (потери), обусловленные некачественной сваркой или дефектами материала [1].

Рис. 1. Батарен без ребер

Аккумулирующие батареи в отличие от других систем, использующих принцип перекрестных потоков, позволяют восстанавливать в основном явную теплоту. В то же время любая скрытая теплота превращается в явную, передаваемую более холодной батарее. В замкнутом контуре промежуточный теплоноситель с помощью насоса циркулирует между двумя или более тепловыми или обменными батареями (рис. 2). В качестве теплоносителя в зависимости от рабочих температур может служить вода, антифриз или диатермическая жидкость. Полное физическое разделение двух потоков и последующее исключение любой опасности загрязнения делают данную систему пригодной для применения в различных отраслях промышленности [1].

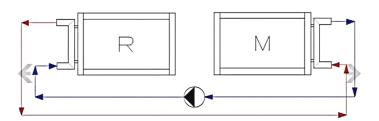


Рис. 2. Принципиальная схема работы резервных батарей

Достоинства резервных батарей:

- высокое качество;
- возможность получения тепла от нескольких источников, находящихся на расстоянии друг от друга;
 - отсутствие загрязнения между двумя воздушными потоками.

Недостатки резервных батарей:

- наличие промежуточной жидкости позволяет получить доход, который едва превышает 55 %.

Рекуперативный пластинчатый теплообменник DUOTERM RCP (рис. 3) обеспечивает возможность получения тепла как в явном, так и в скрытом виде. Теплообменник DUOTERM RCP состоит из участков теплообмена, выполненных в виде пло-

ских алюминиевых пластин, чередующихся с рифлеными алюминиевыми листами, которые вмонтированы в алюминиевый корпус. Рекуперативные теплообменники DUOTERM RCP имеют большую поверхность теплообмена, полученную путем уменьшения расстояния между рифлеными пластинами, что позволяет получить большое количество дополнительно накопленного тепла [1].

Рис. 3. Пластинчатый рекуперативный теплообменник Dueterm RCP

Достоинства рекуперативного теплообменника:

- низкое загрязнение двух воздушных потоков;
- легкая очистка.

Недостатки рекуперативного теплообменника:

- два потока воздуха должны находиться близко друг к другу;
- скрытая теплота передается только тогда, когда температура поверхности рекуперативного теплообменника падает ниже точки росы;
 - конденсация одного из воздушных потоков приводит к появлению влаги [1].

Британская компания S & P Coil Products Limited является хорошо зарекомендовавшим себя производителем и поставщиком нагревательных и охлаждающих пучков труб для систем подачи воды, хладагента/пара и электронагревательных батарей. Созданная в 1979 г. компания SPC теперь работает во всем мире [2].

Тепловые трубы являются наиболее эффективным пассивным методом передачи тепла, доступным на сегодняшний день. В простейшей форме герметичная трубка (обычно из меди) изолируется и заполняется рабочей жидкостью. В качестве рабочей жидкости в тепловых трубах в настоящее время используются хладагенты, такие, как R134A, хотя вода также используется в качестве альтернативы. Тепловые трубы, помимо кондиционеров, используются во многих областях промышленности, включая охлаждение литейных штампов, электронных схем, генераторов в атомной энергетике, энергосбережения, размораживания и в пищевой промышленности [2].

Принцип действия тепловой трубы заключается в следующем. Тепло от поступающего теплого воздушного потока всасывается в секции испарителя, что приводит к закипанию рабочей жидкости. Из-за повышенного давления пар быстро перемещается в более холодную секцию конденсатора тепловой трубки, перенося при этом поглощенное тепло. Когда пар достигает области конденсации тепловой трубы, тепло отводится в охладитель воздуха и пар конденсируется. Жидкость возвращается под действием силы тяжести для завершения цикла. Весь процесс передачи тепла происходит с очень небольшой разностью температур вдоль трубы. Этот процесс получил название эффекта тепловой трубы (рис. 4) [2].

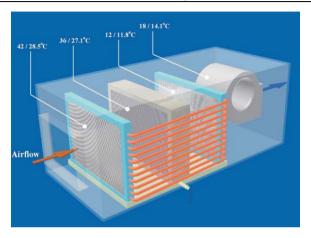


Рис. 4. Эффект тепловой трубы

Тепловые трубы имеют ряд преимуществ:

- отсутствие движущихся частей;
- высокая эффективность;
- низкое падение давления воздуха;
- легкий дренаж конденсата;
- отсутствие прямой потребности в энергии;
- передача тепла без перекрестного загрязнения;
- долговечны и практически не требуют технического обслуживания [2].

Кроме того, тепловые трубы можно обрабатывать, чтобы они могли выдерживать коррозионные среды, такие, как бассейны и некоторые технологические процессы [2].

Литература

- 1. Cominter. Режим доступа: http://www.comintersrl.com. Дата доступа: 04.04.2018.
- 2. SPC. Режим доступа: http://www.spc-hvac.co.uk. Дата доступа: 05.04.2018.